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Site-bond percolation: a low-density series study of the 
uncorrelat ed limit 
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Center for Polymer Studies and Physics Department, Boston University, Boston, Mass. 
02215, USA 

Received 7 November 1978 

Abstract. A generalisation of the pure site and pure bond percolation problems is studied, 
in which both the sites and bonds are independently occupied at random. This generalisa- 
tion-the site-bond problem-is of current interest because of its application to the 
phenomenon of polymer gelation. Motivated by considerations of cluster connectivity, we 
have defined two distinct models for site-bond percolation, models A and B. In model A, a 
cluster is considered to be a set of occupied bonds and sites in which the bonds are joined by 
occupied sites, and the sites are joined by occupied bonds. Since a bond cannot contribute 
to cluster connectivity if either site at its endpoints is not occupied, we define model B in 
which these ‘non-connecting’ bonds are treated as part of the cluster perimeter. We prove 
that the critical curve and critical exponents are the same for both models. For model B, we 
calculate low-density series expansions for the mean cluster size on the square lattice. We 
calculate three different series, using the following definitions of cluster size: site size, bond 
size, and a hybrid measure involving both site and bond size. All three series have been used 
to obtain the phase boundary between the percolating (gel) and non-percolating (sol) 
regions. Numerical evidence is presented which indicates that along the entire phase 
boundary the mean-size exponent y assumes a universal value. 

1. Introduction 

Recently, the percolation problem has attracted renewed interest (see e.g. the recent 
reviews of Stauffer (1979), Essam (1979) and Pfeuty and Guyon (1979)). One reason 
for this current interest is that it is becoming clear that generalisations of the pure 
percolation problem are likely to have extensive applications in the description of 
various phenomena in nature. 

One generalisation of pure percolation that very recently has been used to describe 
both polyfunctional condensation and cross-linking of linear polymers (Coniglio et a1 
1979) is correlated ‘site-bond’ percolation. In this model, bonds represent chemical 
bonds, occupied sites represent monomers, and empty sites represent solvent mole- 
cules. Sites are correlated as in a lattice gas model of a binary mixture. Thus far, this 
model has been solved only on the Bethe lattice. 

We have begun a study of site-bond percolation for more realistic lattices, and as an 
important first step we consider the uncorrelated model on the square lattice with both 
the sites and bonds independently occupied at random. This model was first mentioned 
by Frisch and Hammersley (1963), but it was not until 15 years later that the first 
calculations were performed, using Monte-Carlo methods (Hoshen 1978). 

t Work supported in part by the ARO and AFOSR. 

0305-4470/79/112073 + 13$01.00 @ 1979 The Institute of Physics 2073 



2074 P Agrawal, S Redner, P J Reynolds, and H E  Stanley 

In this work we present the first treatment of site-bond percolation using series 
methods. In P 2 we first define the previously treated site-bond model, and then 
introduce a new model which appears to treat cluster connectivity in a more natural 
fashion. In 0 3 we outline the details of the cluster enumeration procedure. From the 
cluster data we calculate the mean-size function in a low-density series. Some 
important properties of these series are described in § 4. Finally, in P 5 we obtain the 
phase boundary separating the percolating (gel) and non-percolating (sol) species in the 
probability parameter space (cf figure 1) with an accuracy of 1-2% by using series 
analysis methods. We further make an approximate estimate for the critical exponent 
for the mean cluster size, and our analysis indicates that it assumes the universal 
two-dimensional value of approximately 2.43 along the entire phase boundary. In the 
Appendix we show that the two models introduced in § 2 have the same phase boundary 
and the same critical exponents. 

I I I I 

I , 
I 

Figure 1. The phase diagram of the site-bond system in the ps-pb parameter space. The 
critical curve, shown as a full curve, separates the percolating region, in which a gel has 
formed, and the non-percolating region, the sol phase. The error bars reflect subjective 
estimates of the reliability of the analysis methods employed in 0 5. The arrows indicate 
schematically how the various series probe the phase boundary. 

2. Two models of site-bond percolation 

Model A 
The sites and bonds are randomly occupied with independent probabilities pr and P h  

respectively. Notice that the pure site problem is simply the limiting case P b  = 1 ( p ,  
variable), while the pure bond problem is the limiting case ps  = 1 ( P b  variable). We 
define a cluster to be a set of occupied bonds and sites in which the bonds are joined by 
occupied sites and the sites are joined by occupied bonds. 

It is clear that a bond cannot contribute to cluster connectivity if either or both 
endpoint sites are absent (cf figure 2). We call such bonds ‘non-connecting’. From this 
consideration it is natural to exclude the non-connecting bonds from the cluster, and 
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P 
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Figure 2. ( a )  Two typical clusters in model A. Full circles represent occupied sites and open 
circles represent unoccupied sites. The two clusters remain separate even though there exist 
bonds (bl and b2) from the two clusters which terminate at the same lattice site s. Such 
bonds are called non-connecting. (b) The same two clusters in model B of site-bond 
percolation. 

instead consider them to be in the cluster perimeter. We are thus led to define a second 
model. 

Model B 
Sites and bonds are occupied in the same way as in model A. However, we now define a 
cluster as a set of joined occupied sites and bonds, with the non-connecting bonds 
included as part of a generalised cluster perimeter. Notice that if we measure clusters by 
site size, then the non-connecting bonds have no effect on the size of a given cluster. 
However, if bond size is used, a cluster can have two different sizes in models A and B. 
In the next section we show how the inclusion of the non-connecting bonds in the cluster 
perimeter is incorporated into the low-density series calculation. 

3. Low-density series calculation for the mean cluster size 

The application of series expansions for percolation was first suggested by de Gennes 
et a1 (1959) and Domb (1959) and has been used extensively since then for studying 
many different systems (see e.g. Sykes et a1 (1976) and references therein). The series 
method is based upon exact enumeration of all possible clusters up to a size determined 
largely by the limits of computer capability. From the probability factors associated 
with each cluster, one may obtain power series for various macroscopic quantities, such 
as the mean cluster size. These series may then be extrapolated to obtain information 
about the percolation threshold. 

To illustrate our computer enumeration and to show how the non-connecting bonds 
are treated as part of the cluster perimeter in model B we present the lowest few orders 
of the calculation in detail. In what follows it is most useful to measure clusters in terms 
of both their site and bond size; therefore we calculate the mean number of clusters of s 
sites and b bonds per site, (n+). 

To begin, we consider all clusters containing only one site. In model A these clusters 
contain between zero and four bonds, all of which are non-connecting (cf figure 3). In 
model B such clusters contain one site and no bonds, and the non-connecting bonds are 
included in the perimeter as follows: If a cluster is to contain only one site, each 
perimeter site must be either unoccupied (this occurs with probability qs = 1 - p s ) ,  or 
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Model Model 
A 0 

Figure 3. The one-site clusters. In model A, each cluster of k non-connecting bonds may be 
embedded in 4! /k ! (k  -4)!  ways on the square lattice. If we include all such bonds in the 
cluster perimeter, we obtain the one-site, zero-bond cluster of model B. 

else it is occupied but the bond between the perimeter site and the occupied site is 
absent (this occurs with probability p&, where qb = 1 - p b ) .  Since the two possibilities 
are mutually exclusive, we obtain the factor (qs +p&) for each of the four perimeter 
sitest. Implicit in the former case is the fact that a non-connecting bond may be present 
without altering the cluster. Hence we have 

(1) 

If the quantity in parentheses were expanded, the various terms obtained would 
represent the 16 clusters indicated in figure 3. This illustrates that, for each cluster in 
model B, there is a multiplicity of clusters in model A, and thus for the latter model the 
series calculation is relatively more time-consuming. Moreover, because model B 
appears to treat cluster connectivity more naturally, and because of the equivalence of 
the two models (cf Appendix), we shall henceforth focus on model B. 

The contribution to ( n ~ , ~ )  is found by similar reasoning to that used above. We find 

(ns= l , b = O )  = ps (4s + p d b ) " .  

(112.1) = 2p;pb(qs +pd?bl6. (2) 

The overall factor of two on the right-hand side occurs because there are two distinct 
embeddings of the two-site cluster on the square lattice. 

At third order, an important new feature in the perimeter factor arises which is 
central to our calculation. Consider the three-site cluster shown in figure 4. Six of the 
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Figure 4. A three-site, two-bond cluster occurring in model B. Notice that six of the 
perimeter sites have valence 1, in that they are nearest neighbour to only one cluster site, 
while the remaining perimeter site s has valence 2. 

t Alternatively, we can obtain this factor noting that we wish to find [l -(the probability that an occupied site 
is not isolated)]. This is simply 1 - p I p b .  This line of reasoning becomes very complicated, however, when the 
perimeter site is nearest neighbour to more than one occupied site. 
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perimeter sites can be joined to the cluster via a single non-connecting bond, and 
therefore we have for each of these sites a factor qs+ps4b, as before. For the last 
perimeter site, however, there are two possible ways in which it may join to the cluster 
via non-connecting bonds. To exclude the possibility of both these connections 
requires a different perimeter factor, qs + p d ; .  In general, if a perimeter site is nearest 
neighbour to k different cluster sites, a factor qs +p& occurs. We shall say that such a 
perimeter site has ‘valence’ k.  Thus the enumeration of the (ns,b) involves specifying the 
valences of all the perimeter sites. 

In addition, we must also enumerate those configurations where two nearest- 
neighbour occupied sites have a missing bond between them (cf figure S ) ,  because each 
such missing bond contributes just a single factor of q b  to the cluster perimeter. We 
shall refer to such bonds as ‘empty’, and denote the number of empties for each cluster 
by e. 

Figure 5. An example of an empty bond configuration in which there is a missing bond 
between sites s and s’. Notice that there are four distinct bond configurationspossible for the 
given site configuration. 

While a large amount of configurational information is required for each cluster, a 
simplification arises because the specification of the perimeter valences, and the 
number of empties for each cluster, is redundant. This may be seen by first noting that 
these variables are related to b and to the number of independent closed loops 1 in the 
following way: 

ktk = 2( b + 2 )  - 41 - 2e, 
k 

where tk is the number of perimeter sites of valence k. To show this relation, note that 
Z kfk is just the total number of non-connecting bonds in the cluster perimeter. This 
would be equal to 2(b + 2 )  if the cluster had no closed loops or empty bonds. To obtain 
the term of -41 - 2e, consider what happens when bonds are added to a cluster so that 
two distant sites are joined together to form a closed loop (cf figure 6). The addition of 

b = 6 . e = 0 .  I :O b :7,e=1 .I=O b = B . e = O , I = l  
t k t k = 1 6  T k f k = 1 6  T k t k = 1 6  

la 1 ( 6 )  I C  I 

Figure 6. A demonstration of the relation Ik krk = 2(b + 2) -41 - 2e. As bonds are added to 
the cluster in (a) to form a closed loop, the total number of non-connecting bonds in the 
perimeter remains constant. 
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an occupied bond increases the number of non-connecting bonds by two (assuming no 
empties are formed in the process), and thus the factor of 26 in equation ( 3 a ) .  When the 
next-to-last bond is added, an empty bond is created, but now the number of 
non-connecting bonds, Z k  ktk, remains constant. Thus to balance this we require a 
factor -2 in ( 3 a )  for each empty bond. When the loop is closed, & ktk still remains 
constant, while b increases by 1 and e decreases by 1 .  To compensate, we must subtract 
a factor 4 for each closed loop. Furthermore, if we use the fact that 1 = ( b  + 1 -s ) ,  we 
obtain 

1 k t k  = 4 s - 2 b - 2 e a  
k 

This shows that, for each cluster, specification of e is indeed redundant once s, b and 
Z k  ktk have been calculated. By thus avoiding reference to e, we reduce the required 
computer memory by a factor of six, we save about 10% in computer time, and we 
achieve a considerable simplification in our counting algorithm. 

From the techniques described by Martin (1974),  we have developed computer 
programs to enumerate the clusters in site-bond percolation, and we have obtained all 
clusters of up to 12 bonds. (We note that, at 12th order in bond size, clusters may 
contain between 9 and 13 sites.) From the configurational information, the mean-size 
series are calculated by a suitably weighted average of the (ns ,6) .  Two natural 
definitions of the mean-size function aret  

and 

s.6 

Since both the number of sites and the number of bonds measure cluster size, we also 
consider a ‘hybrid’ mean-size function 

Each of these series is then extended by one order in P b  by a generalisation of the 
procedure described in Sykes and Glen (1976).  This is accomplished by first calculating 
the low-density series for C s , b  ~ ( n , . ~ )  and Es.6 b(n,b) ,  and then exploiting the sum rules 

and 

Notice that equation ( 5 b )  contains an overall factor of two because there are two ways in 
which a single bond may be embedded on the square lattice. The factor of p :  occurs 
because in model B there must be an occupied site at both endpoints of each occupied 
bond. In addition, with the aid of the sum rules (3, we are able to enumerate by hand 

i We have used the un-normalised form of the mean-size series. This definition will be more convenient for 
the discussion in the next section. 
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the remaining relatively small number of ll-site clusters not yet accounted for by the 
computer, thus extending the series for S by one order in ps. Therefore we have 
calculated the mean-size series to 13th order in Pb and 1 lth order in ps.  The coefficients 
are shown in tables 1. 2 and 3. 

4. Checks on the series coefficients 

In table 1, if we let P b  = 1, the entries reduce to the pure site series; similarly in table 2, if 
we let ps = 1, we obtain the pure bond series. This is as we expect and is a reassuring 
check. Furthermore, we have the remarkable property that for all three series the 
coefficients of PEP:'' are identical, and in fact are equal to the number of n-step 
self-avoiding walks (SAW'S). This feature is most readily verified by employing the 

Table 1. The coefficients in the series for the mean cluster size defined by the relation 
s'"' = Z5.b s 2 ( n , b ) .  

S(S' = p ,  
+ pb (4pf 
+ Pi (12P: 1 
+~1(346~:) 
+PbPr (1oops-12) 
+pb:(284ps -48) 
+p~p~(78Op,  -252) 
+plp:(2172pf - 8 . 5 6 ~ ~  +76) 
+pfp:(5916pf - 3 3 8 8 ~ ~  +300) 
+pzp:(16268pf - 1O832ps+2172) 
+plop:(44100p~ -37584~; +8340p, -544) 
+p:lpy(120292p: -116296~3 +38232p5 -2880) 
+~:~pZ(324932pf: -37622Opj+ 140316pf - 1 9 6 2 4 ~ ~  +300) 
+p~3pf0(881500p: - 1135840pj +540468p; -927448, +4236) 

+ p i 5 p ; ' ( . . . -  4624) 
+ p 1 4 p : * ( .  . . +32400) 

Table 2. The coefficients in the series for the mean cluster size defined by the relation 
S'*' = Bs,b  b2(n,b). 

S'*'=p*(2pf) 
+ P i  (12P: 1 

+P;P:(284Ps - 32) 

+~$(346~:) 
+ P b P s  (loops -4) 

+p:p:(780ps - 180) 
+p:p:(2172pf -688pS+40) 
+pfp:(5916pf - 2 7 9 2 ~ ~  +208) 
cpZpf(16268pf - 9 3 5 2 ~ ~  + 1516) 
+ p ~ o p ~ ( 4 4 1 0 0 p ~  -32880~: +6432p, -316) 
+p:'p~(l20292pj - 104288~: +29972p, -2000) 
+pi2pz(324932p: -340276~: + 115140ps - 1 3 8 6 4 ~ ~  + 184) 
+p~3pp,'o(881500p: - 1042544~: +450148pf - 7 0 1 2 8 ~ ~  +2688) 
+ p i 4 p i 1 ( .  . .+22528) 
+pk5pf1( * * *-2896) 
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Table 3. The coefficients in the series for the mean cluster size defined by the relation 
2&b s b ( 4 . b ) .  ~ ( s b )  = 

S''b'= pb(4pq) 
+ PE(12P9 
+ P:WP:) 
+p~p:'(lOOps - 8 )  
+p:p;(284~,-40) 
+p2p:(780ps - 216) 
+p:pf(2172pq - 7 7 2 ~ ~  +56)  
+pfpp:(5916p: - 3 0 8 8 ~ ~  +252) 
+pZp:(16268p: - 1 0 0 9 2 ~ ~  + 1824) 
+plop:(44100pj - 3 5 2 3 2 ~ 3  +7352p, -416) 
+pi1p:(120292pj - 110292~3 +33940p, -2412) 
+ ~ : ~ p ~ ( 3 2 4 9 3 2 p ~  -358248~:  + 127376~:  - 1 6 5 2 8 ~ ~  +236) 
+p:3p,'o(881500p: - 1089192~: +494032pf - 8 0 8 4 8 ~ ~  + 3376) 
+ppp:' ( . . . + 2 7 0 8 4 )  
+ p ~ ' p f ' ( . . . -  3664) 

analogue of the fluctuation-dissipation theorem for percolation, in which the mean size 
may be expressed in terms of the pair-connectedness function (Essam 1971, Levin- 
shtein eta1 1975). With the aid of this theorem, it is relatively straightforward to verify 
the SAW property for S") and S"' (cf figure 7). However, to ireat S"') it is most 
convenient to first transform the model in the following way: We add sites, which may 
be occupied with probability P b ,  at the midpoints of each bond, and we now consider all 
the bonds to be occupied. The resulting decorated site model is completely equivalent 
to site-bond percolation. (The existence of such a mapping was first mentioned in 
Frisch and Hammersley (1963).) On the decorated lattice, cluster size is most naturally 
measured by the total number of sites: these include sites at vertices (s on the original 
lattice) and decorated sites (b  on the original lattice). Hence a natural definition of the 
mean cluster size is 

With this definition, it now follows that between two fixed vertex sites the contribution 
at order pip:'' to the pair-connectedness is again due to SAW'S only (notice that 
decorated sites may not be the endpoint of a SAW in model B of site-bond percolation). 
Since the SAW property for S") and S'b' was verified separately, it follows that S(sb' also 
has the SAW property. 

S S '  

1 0 1  
S S '  

( b )  

Figure 7. Two typical graphical contributions to the pair-connectedness between sites s and 
s'. Only the SAW graph of (a )  contibutes at order PEP:''. 
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5. Series analysis 

Our objective is to obtain the critical curve which divides the percolating and non- 
percolating regions in the ps-pb parameter space. We further wish to investigate 
whether the mean-size exponent y defined by S - Ip -pCI-’ remains constant along this 
curve, in accord with universality. Here S is any of the previously defined mean-size 
functions, p means ps or Pb or a linear combination of the two depending on the 
direction of approach to the critical curve (see below), and p c  is the critical value of p. 

To check the internal consistency of our analysis methods, and to aid in the 
estimation of the uncertainties in determining the critical curve, we have analysed all 
three of our mean-size series (4a) - (4c) .  Furthermore, since each series is a function of 
both ps  and P b ,  we are able to probe the critical curve from any direction in this 
parameter space. We have chosen three directions of approach in our study: (i) fix P b  

and estimate the critical value of p s ;  (ii) fix ps  and estimate the critical value of P b ;  and 
(iii) substitute ps  = xpb and find the critical value of Pb. These three choices correspond 
to approaching the critical curve vertically, horizontally or along a ray from the origin 
(cf figure 1). We have found it quite useful to employ all three directions of approach, 
because the best results seem to be obtained when the critical curve is probed roughly 
perpendicularly. Thus we have a total of nine different series for our analysis (three 
counting methods times three directions of approach). 

In general, when we compare the analysis of the three series obtained by the 
different counting methods with the analysis of a single series probing the phase 
boundary from different directions the former case gives more consistent results. Thus 
we use the latter case for establishing an estimate of our confidence limits. 

To map out the critical curve, we have used a variation of the technique introduced 
by Sykes et a1 (1976). Pad6 approximants to the logarithmic derivative series for S are 
formed, and the positive real-valued roots and residues are selected. When the values of 
the residues are plotted against the corresponding location of the root, a single 
relatively smooth curve is usually defined (cf figure 8 ( a ) ) .  Sykes et a1 have used this, 
together with the fact that there exists a complementary lattice (the matching lattice for 
site models and the dual lattice for bond models) which has its critical point at 1 - p c  of 
the original lattice. Thus if the residues obtained in the two related problems are 
plotted on complementary probability scales, the two curves intersect at p c .  This 
intersection point may then be used to determine the value of y. In this way Sykes et a1 
have found numerically that y appears to be a dimensional invariant, in accord with 
universality. 

For the site-bond problem, the definition of a complementary lattice is ambiguous, 
however, because the dual and match of the square lattice are not identical. Since it is 
not possible to derive series for the complement to the site-bond problem, we have 
found it necessary, in our application of the root-residue plot, to first assume a value for 
y to find pc ,  and later test the validity of this assumption. We therefore provisionally 
assume that y equals the two-dimensional value of approximately 2.43 (Sykes et al 
1976) along the entire crtical curve, for the following reasons: At the two endpoints, 
( p ,  = 0.593, p b  = 1) and ( p ,  = 1, pb = 0.5), we have the well-established numerical 
evidence of Sykes et al, based on longer series from pure percolation on the square 
lattice, that y = 2.40 f 0.06 and y = 2.425 f 0.005 respectively. Furthermore, for 
ps = Pb the model can be transformed to the previously discussed site problem on the 
decorated square lattice, where we again expect that y=2.43  by universality. In 
addition, the smoothness postulate of Griffiths (1970) is directly applicable to the 
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Figure 8. ( a )  A representative plot of the residue against the location of the corresponding 
root for the Pade approximants to the logarithmic derivative series for S. The case shown is 
that of ps  variable, p b  = 0.8 (vertical direction of approach) and site counting. If we 
provisionally assume that y = 2.43, then p c  is determined to be 0.702. ( b )  Dependence of 
the ‘square root’ ratios br = (ar /ar -2 )”2  on 1/[ (open circles). The case of pr variable, 
pa = 0.8 and site counting is again shown. As a guide for the eye, two successive ratios are 
averaged (full circles). The full line indicates the expected asymptotic behaviour of the 
ratios when we use the values y = 2.43, p c  = 0.702, as determined from (a ) .  The broken 
lines show the expected asymptotic 5ehaviour when the values y = 2.53, p c  = 0.697 and 
y = 2.33, p c =  0.704 from ( a )  are used. Since the ratio data lie within the wedge-shaped 
region defined by the broken lines, we deduce that y = 2,43*0.10. Similar plots at other 
points along the phase boundary yield the conclusion that y remains 2.43 to within 
approximately 10%. 

site-bond model, and it provides further justification for the universality of y. Finally, 
one can formulate a position-space renormalisation group for this model, following 
Reynolds et a1 (1977). It is found that the entire critical curve (including the pure site 
and pure bond endpoints) is controlled by a single fixed point, thus leading to 
universality along the phase boundary (Nakanishi and Reynolds 1979). 
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From our analysis we have obtained the following behaviour for the three directions 
of approach considered: (i) Vertical (fixed p b ) .  This series gives smooth, well-defined 
curves of root against residue along .the entire phase boundary. However, the internal 
consistency of our analysis becomes worse as the pure site limit is approached. 
Nevertheless, we find that this direction of approach gives the best results although the 
series used here are of the shortest length. (ii) Horizontal (fixed p s ) .  This series again 
gives good results near the pure bond limit, and less internally consistent results toward 
the pure site limit. For ps G 0-75 the series probe the phase boundary almost tangen- 
tially; this appears to be the source of the unreliability of our results for this case. (iii) 
Rays (setting ps  = x p b ) .  This direction of approach also seems to be quite useful, but 
once again mostly for ps  3 0.75, for the same reasons as in (ii). 

On the whole, we find that the nine different series give results that are in good 
agreement with each other, especially away from the pure site limit. Near the pure bond 
limit we estimate p c  to 1% accuracy, while near the site limit the accuracy is about 2%. 
The phase boundary thus obtained is shown in figure 1, with approximate error bars for 
each direction of approach. 

Thus far, we have assumed the universality of y to obtain the critical curve. We test 
this assumption by considering the ‘square root’ ratios cl = (a1/a1-2)’’2, where a1 is the 
lth coefficient in the mean-size series. When the F1 are plotted against 1/1, in the limit 
1 + 00 the points should converge to p;’ asymptotically, forming a straight line of slope 
p i ’  ( y  - 1). This ideal behaviour does not occur on the square lattice, however, because 
of the ‘antiferromagnetic’ singularity in the series (see e.g. Gaunt and Guttmann 1974). 
This singularity, on the negative p axis, gives rise to the characteristic even-odd 
oscillations in the ratios. Thus a limiting value of the slope is not readily obtained, 
unless we use some averaging procedure for the ratio data. While the estimates 
obtained for critical behaviour are not conclusive, they can be used in conjunction with 
the root-residue curves of the type shown in figure 8(a)  to yield the following important 
consistency check: Each point on the root-residue curve determines a pair ( p c ,  y ) ,  from 
which we may specify a straight line of slope pi’ ( y  - 1) and intercept p i ’  on a 1/1 ratio 
plot by assuming the asymptotic form of 51 - pi ’ [ l -  ( y  - 1)/1]. From the line which 
best fits the ratio data subjectively, we then infer a value for y. 

This approach works quite well for both the horizontal and vertical series, but not 
for the ray series, where the ratios do not exhibit the simple even-odd oscillations on a 
1/1 plot. Thus, with the exception of this last series, we have found that the value of y is 
consistent to *lo% with the value 2.43. This conclusion holds for almost the entire 
critical curve, except very near the site limit where all three series are very poorly 
behaved. This problem was expected, since the critical behaviour has not been 
determined precisely by series for the pure site problem, even though very lengthy 
series have been analysed (Sykes et a1 1973). We thus conclude that, with the above 
provisos, y indeed appears universal. 

6. Summary 

We have considered the site-bond percolation problem, a model which may be useful in 
describing polymer gelation. We have introduced two specific models of site-bond 
percolation, models A and B. As a first step in understanding this system we have 
considered the non-interacting limit. We have calculated low-density series for the 
mean-size function S(p , ,  p b )  for model B. Series analysis has been used to calculate the 
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phase diagram (cf figure 1) and to provide evidence that the exponent assumes a 
universal two-dimensional value of approximately 2.43 along the phase boundary 
separating the percolating (gel) and non-percolating (sol) species. Thus we have 
confirmed that for our uncorrelated model the exponents are the same as those for pure 
site and bond percolation. This supports the conjecture of Coniglio et a1 (1979) that 
percolation exponents should be expected for real gels close to the critical point. 
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Appendix. Equivalence of the models of site-bond percolation 

The two models introduced in Q 2 can be considered equivalent if we can show that: ( a )  
the critical curves are identical for both models, and (6) the critical exponents are also 
identical. 

Proof of (a ) .  We must show that, if there exists an infinite cluster in model A, then it 
necessarily implies the existence of an infinite cluster in model B, and vice versa. If site 
counting is used, then the definition of cluster size is identical for both models A and B, 
and the hypothesis is certainly true. Now consider bond counting. If there exists an 
infinite cluster in model B, then an infinite cluster in model A must have already formed, 
since in this case non-connecting bonds are now included in the definition of a cluster. 
To show the converse, note that the number of bonds belonging to the cluster in model 
B is always a finite fraction f of the number of bonds in the cluster according to model A 
(except for the trivial case of the zero-bond, one-site cluster). It is readily verified that, 
on the square lattice, Nb/(3Nb +4) sf< 1, where Nb is the number of bonds in a cluster 
according to model A. The lower bound, which is relevant to this proof, is determined 
by clusters with no empty bonds or closed loops. Thus the existence of an infinite cluster 
in model A implies the existence of an infinite cluster in model B, and hypothesis ( a )  is 
proved. 

Proof of (6). Let SA and SB be the mean cluster size (with the same counting employed 
for both functions) for models A and B respectively. We assume that at the critical curve 
these functions diverge as 

where p means ps  or Pb or a linear combination of the two, depending on the direction of 
approach to the critical curve. 

If site counting is employed, then in fact we have SA = SB. With bond counting we 
note that from the proof of ( a )  we have the large-N inequality, SA> SB L (sA/3). 
Therefore Y A  = YB. 
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